
1.  Introduction
Accurate models of ice sheet response to climate change require good physical understanding of interac-
tions between surface melting, subglacial hydrology, and ice dynamics (e.g., Bell, 2008; Chu, 2014; Davi-
son et al., 2019). On the Greenland Ice Sheet (GrIS) ablation zone, surface melting activates a perennial 
hydrologic system of supraglacial streams, rivers, and lakes (Irvine-Fynn et al., 2011; Lampkin & Vander-
Berg, 2014; Pitcher & Smith, 2019; Rennermalm et al., 2013), which commonly drain into moulins forming 
a dynamic subglacial drainage system that modifies basal pressures and ice motion (e.g., Bartholomew 
et al., 2012; Meierbachtol et al., 2013; Van de Wal et al., ; Zwally et al., 2002). While early concerns about 
warming-induced runaway sliding now seem unfounded (e.g., Flowers, 2018; Tedstone et al., 2015, 2013; 
van de Wal et  al.,  2015), physical processes linking GrIS supraglacial meltwater runoff, ice sheet basal 
pressures, and ice sliding remain under intense study (Davison et al., 2019; Nienow et al., 2017; Williams 

Abstract  Surface melting impacts ice sheet sliding by supplying water to the bed, but subglacial 
processes driving ice accelerations are complex. We examine linkages between surface runoff, transient 
subglacial water storage, and short-term ice motion from 168 consecutive hourly measurements of 
meltwater discharge (moulin input) and GPS-derived ice surface motion for Rio Behar, a ∼60 km2 moulin-
terminating supraglacial river catchment on the southwest Greenland Ice Sheet. Short-term accelerations 
in ice speed correlate strongly with lag-corrected measures of supraglacial river discharge (r = 0.9, τ = 0.7, 
p < 0.01). Though our 7 days record cannot address seasonal-scale forcing, diurnal ice accelerations align 
with normalized differenced supraglacial and proglacial discharge, a proxy for subglacial storage change, 
better than GPS-derived ice surface uplift. These observations counter theoretical steady state basal sliding 
laws and suggest that moulin and proglacially induced fluctuations in subglacial water storage, rather 
than absolute subglacial water storage, drive short-term ice accelerations.

Plain Language Summary  The importance of surface meltwater runoff to Greenland ice 
sheet subglacial hydrology and ice sliding dynamics is widely recognized but poorly constrained by 
field observations. We present 168 consecutive hours of rare in situ discharge measurements in a large 
supraglacial river draining the ice sheet surface, just upstream of where it plummets into a major moulin. 
GPS measurements of ice surface motion record brief accelerations in ice sliding speed that follow 
daily cycles in meltwater entering the moulin. By comparing these measurements with proglacial river 
discharges leaving the ice sheet, we identify daily fluctuations in subglacial water storage that track short-
term accelerations in ice motion. These findings affirm the importance of supraglacial rivers to subglacial 
water pressure and ice dynamics, even in relatively thick ice >40 km inland from the ice terminus.
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et al., 2020), particularly processes governing englacial connectivity and subglacial evolution due to surface 
melting (e.g., Christoffersen et al., 2018; Poinar et al., 2015; Stevens et al., 2015).

Traditional basal sliding law formulations linking subglacial pressure and ice motion assume steady state 
basal cavities (e.g., Bindschadler, 1983; Gagliardini et al., 2007; Schoof, 2005). However, observational re-
search suggests that cavities constantly undergo transient evolution in response to fluctuations in suprag-
lacial meltwater supply and subglacial channelization (Andrews et al.,  2018; Bartholomaus et al.,  2008; 
Cowton et al., 2016; Hoffman et al., 2011; Iken et al., 1983). If so, highest subglacial water pressures (and 
therefore ice sliding speeds) should occur when transient cavities are growing fastest, not when they are 
largest (Cowton et al., 2016; Iken et al., 1983).

Evidence for transient cavity evolution is drawn primarily from GPS-derived correlations of horizontal ice 
speed with vertical ice surface uplift (interpreted as a proxy for total subglacial water storage, S) or its first 
derivative (interpreted as subglacial water storage rate-of-change, ΔS). GrIS horizontal ice sliding speed 
broadly covaries with vertical surface uplift over seasonal time scales (e.g., Bartholomew et al., 2012, 2010; 
Hoffman et al., 2011), but variations at shorter timescales tend to correlate better with its derivative (An-
drews et  al.,  2018; Cowton et  al.,  2016; Hoffman et  al.,  2011). Such correlations are typically weak and 
spatially variable due to a range of factors confounding estimation of basal uplift from ice surface elevation 
measurements (Andrews et al., 2018; Hoffman et al., 2011). Therefore, it is difficult to infer interactions be-
tween surface melting, subglacial water storage, cavity growth, and ice motion for the GrIS, despite previous 
success on mountain glaciers (e.g., Armstrong & Anderson, 2020; Bartholomaus et al., 2011, 2008)

To study the links among supraglacial runoff, subglacial water storage fluctuations, and short-term ice mo-
tion, we present in situ measurements of moulin input (i.e., supraglacial discharge), ice surface speed, and 
ice surface uplift for Rio Behar, a large supraglacial river on the GrIS midelevation (>1,200 m a.s.l.) ablation 
zone (Figure  1). We compare daily cycles in these variables with PROMICE automated weather station 
(AWS) measurements of surface energy balance and ablation (Fausto & van As, 2019), and with proglacial 
river discharges from three gauging stations downstream (Rennermalm et al., 2017; Tedstone et al., 2017; 
van As et  al.,  2019). We present GPS measurements of horizontal ice surface speed and vertical uplift, 
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Figure 1.  Study area in southwest Greenland. Black star shows location of our GPS measurements of ice surface motion and Acoustic Doppler Current Profiler 
(ADCP) measurements of moulin input (supraglacial discharge) in Rio Behar, a large supraglacial river penetrating the ice sheet >40 km from the ice edge. 
Field work was conducted ∼750 m upstream of the Rio Behar terminal moulin. Black outline delineates the surface catchment (60.02 km2 in July 2016). White 
stars locate proglacial river gauging stations; black square locates PROMICE KAN_M automated weather station. Background is a July 26, 2016 true-color 
Landsat-8 satellite image.
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and use them to estimate subglacial storage S and rate-of-change ΔS, respectively. We also compute alter-
nate proxies for S and ΔS by differencing normalized supraglacial and proglacial discharge hydrographs 
(adapted from Bartholomaus et al., 2008, 2011; McGrath et al., 2011; Armstrong & Anderson, 2020). We 
conclude that diurnal cycles in supraglacial river discharge drive ice accelerations through ΔS, confirming 
that transient water storage and cavity growth are important influences on GrIS subglacial basal pressure 
and short-term ice motion.

2.  Data and Methods
2.1.  Observational Data

In July 2016, the Rio Behar terminal moulin was located at 67.047°N, −49.033°W, with an upstream drain-
age catchment of ∼60.2 km2 and mean surface elevation >1,200 m (Figure 1). We established a field camp 
to measure moulin meltwater input and ice surface motion ∼750 m upstream (∼67.050°N, −49.018°W). 
During July 5–13, 2016, we collected 174 measurements of supraglacial river discharge using a SonTek Riv-
erSurveyor M9 Acoustic Doppler Current Profiler (ADCP) and methods of Smith et al. (2017). A Tyrolean 
cableway was suspended over the river to safely and repeatedly tow the ADCP back and forth across the 
channel every hour (Figures S1–S4). In total 847 ADCP transects were acquired, of which 677 later passed 
rigorous quality-assurance screening and were used to compute 168 consecutive hourly discharge measure-
ments from July 6–13 (Text S1–S3, Figure S5, Tables S1–S2, and Data sets S1–S2).

Simultaneous measurements of ice surface motion were collected every 5-s using a Trimble R7 GPS re-
ceiver and Trimble Zephyr Geodetic antenna anchored 3m into the ice to prevent its movement from ab-
lation (67.048°N, −49.018°W, elevation 1211.43 m). On-ice kinematic GPS positions were later estimated 
using carrier-phase differential processing relative to a bedrock mounted base station (∼47 km baseline, 
67.150°N, −50.058°W, elevation 581.19) and final International GNSS Service satellite orbits (Andrews 
et al., 2014, 2018; Chen, 1998; Estey & Meertens, 1999; Hoffman et al., 2011; Text S4). To assess surface melt 
processes, simultaneous measurements of 2-m air temperature, energy balance, and ablation were obtained 
from the nearby PROMICE KAN_M AWS (Fausto & van As,  2019, Text  S5). Proglacial river discharges 
were obtained from gauges at Qinnguata Kuussua/Watson River in Kangerlussuaq (van As et al., 2019), its 
northern tributary Akuliarusiarsuup Kuua (AK4) near the ice terminus (Rennermalm et al., 2017, AK4 sta-
tion), and a discontinued gauge near Leverett Glacier (Tedstone et al., 2017) (Figure 1). Lagged correlation 
coefficients (e.g., Armstrong & Anderson, 2020; Flowers et al., 2016) were used to quantify links between 
these variables and GPS-derived ice motion, and to compute proglacial timing delays between the ice edge 
and Kangerlussuaq (Texts S6, S8).

2.2.  Proxies for S and ΔS

GPS-derived vertical positions and their first derivative were used to estimate subglacial storage S and rate-
of-change ΔS (e.g., Bartholomew et  al.,  2012; Cowton et  al.,  2016; Text  S7). Proxies for S and ΔS were 
also computed by adapting a meltwater input-output approach (Armstrong & Anderson, 2020; Bartholo-
maus et al., 2008, 2011; McGrath et al., 2011) comparing relative timings of supraglacial and proglacial 
river discharge hydrographs (Text S7). Hydrographs were normalized and differenced (supraglacial minus 
proglacial) to assess their relative timings and shapes at Rio Behar moulin versus at the ice edge. These 
“discharge-difference” proxies are unitless and do not satisfy mass conservation. They characterize instan-
taneous net water storage changes, not subglacial routing delays and/or storages known to retard proglacial 
discharges longer than 24 h (e.g., Chandler et al., 2013; Chu et al., 2016; Pitcher et al., 2020; Rennermalm, 
Smith, et al., 2013; Smith et al., 2015; van As et al., 2017). From dye tracing experiments, subglacial rout-
ing from ∼1,300 m elevation takes 1–3 days (Chandler et al., 2013, site L57), or ∼2–5 days from proglacial 
hydrograph analysis (van As et al., 2017). Such subglacial delays and storages are irrelevant to our purpose 
here, which is simply to characterize instantaneous subglacial conditions at our field site, not Lagrangian 
transport to the ice edge. Descriptions of all data, methods, and uncertainties are presented in SI (Texts S1–
S9, Figures S7–S14, Tables S1–S5).
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3.  Results
3.1.  Correlations of Ice Speed with Other Variables

We find strong diurnal cycles in all variables except surface elevation, with daily accelerations in horizontal 
ice speed closely tracking moulin input and melt energy (Figure 2 and Table S3). A consistent progression is 
observed in the timing of daily peaks, with melt energy and air temperatures peaking near local solar noon, 
followed by sequential peaks in ice ablation, proglacial discharge, moulin input, and horizontal ice speed 
(Figure 3). The timing of daily peaks is most consistent for melt energy, proglacial discharge, moulin input, 
and ice speed, whereas peaks in air temperature, ablation, and especially ice surface elevation are more 
variable as indicated by their peak timing range (Table S3).

After lagging our GPS-derived horizontal ice speed time-series to correct for its mean timing offsets with the 
other variables, we compute correlations between potential forcing variables and ice speed using Pearson's 

r, which assumes a linear relationship, and Mann-Kendall's  , which does not assume a linear relation-

ship between variables. We find that ice speed correlates strongly with moulin input (r = 0.90,   = 0.70), 
melt energy (r  =  0.90,    =  0.67), and proglacial discharge (r  =  0.88,    =  0.71) (Figure  4 and Table S4). 
We find moderately strong correlations with ice surface ablation (r = 0.74,   = 0.59) and air temperature 
(r = 0.70,   = 0.54), which are drivers of runoff and melt energy, respectively. Lowest correlation is found for 
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Figure 2.  In situ measurements of (a) melt energy, air temperature, and ice ablation from KAN_M; (b) Rio Behar moulin input (supraglacial discharge) 
and proglacial discharge measured at Kangerlussuaq (-5h timing correction applied); (c) ice surface speed and elevation. Colored envelopes (b), (c) represent 
measurement uncertainties.
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detrended ice surface elevation (i.e., uplift, r = 0.36,   = 0.24, Table S4 and 
Figure 4e). All correlations are statistically significant (p < 0.01). Unlike 
melt energy (which turns negative, implying nocturnal refreezing), mou-
lin input persists throughout the night. Because (i) moulin input close-
ly tracks (and derives from) melt energy; (ii) virtually all surface runoff 
generated within Rio Behar catchment flows to its terminal moulin; and 
(iii) an observed 6h time lag between peak melt energy and peak suprag-
lacial discharge (Table S3) is similar to a previously calculated catchment 
routing delay for Rio Behar (i.e., estimated time-to-peak tp = 5.5 h, Smith 
et al., 2017) we infer that supraglacial river discharge, a product of catch-
ment-integrated melt energy, is the dominant supraglacial forcing varia-
ble driving our locally recorded ice speed variations.

3.2.  Comparison of Short-Term Ice Accelerations with S and ΔS

To further investigate drivers of short-term ice speed variations, we 
test proxies of subglacial water storage S and rate-of-change ΔS calcu-
lated from GPS-derived ice surface observations (following Anderson 
et al., 2004; Andrews et al., 2018; Cowton et al., 2016; Harper et al., 2007; 
Hoffman et al., 2011; Howat et al., 2008) and by differencing normalized 
hydrographs of supraglacial and proglacial river discharge (Texts S7–S9). 
Implicit in the latter “discharge-difference” calculations are assump-
tions that englacial storage is negligible; that en/subglacial melting is 
negligible; that subglacial routing delays are irrelevant to instantaneous 
net storage; and that proglacial discharge reflects overall regional basal 
water pressure, allowing Rio Behar moulin input to be compared with 
regional proglacial discharge despite its smaller spatial domain (60 km2 
versus ∼2,800 km2 to 1,750 m a.s.l.) and absolute discharge magnitude 
(∼6–38 m s− 1 versus ∼800–1,300 m3 s−1).

Comparison of our observed horizontal ice speeds with both proxies for S and ΔS suggests that ΔS drives 
short-term accelerations in ice speed (Figures 5, S11, S13, S14 and Table S5). This conclusion is clearest from 
the discharge-difference proxies, with ΔS tracking ice as well or better than S (see Figure 5c versus 5b; S13c 
versus S13b; Figures S11d, S14d vs. S11c, S14c). This same conclusion may be drawn, albeit less compel-
lingly, from conventional GPS-derived S and ΔS proxies (Figure 5a versus Figure 2c; Figures S11b, S14b 
versus S11a, S14a). For both methods, ΔS generally correlates with ice accelerations better than S (Table S5) 
suggesting that changes in subglacial water storage force short-term ice speed accelerations at our field site.

4.  Discussion and Conclusion
We find that diurnal cycles in moulin input are the primary driver of short-term accelerations in ice sliding 
velocity at our field site (Figure 4). This finding supports previous work (Andrews et al., 2014) and the 
conclusion that over short time scales, diurnal variability in supraglacial river input imposes a first-order 
control on subglacial water pressure fluctuations. Furthermore, while short-term accelerations in ice speed 
closely follow moulin input, they also tend to track proxies of subglacial water storage change (ΔS) better 
than proxies of absolute storage (S) (Figures 5, S11, S13, and S14), suggesting that nightly peaks in subgla-
cial water storage drive subglacial basal pressure and short-term ice motion.

This conclusion is more evident in discharge-difference proxies than conventional GPS-derived proxies 
(e.g., Figures 5c versus 5a; S13c versus S13a; S11d, S14d versus S11b, S14b). This is likely due to our in-
ability to assess the impact of changes in the ice column due to variations in vertical strain, making our 
GPS-derived proxies susceptible to local and nonlocal forcings (e.g., Price et al., 2008; Ryser et al., 2014; see 
Text S7). Differencing supraglacial and proglacial hydrographs, therefore, may characterize subglacial water 
storage conditions more sensitively than small vertical ice surface elevation changes, which are inherently 
difficult to detect and have multiple sources of uncertainty (Anderson et al., 2004; Andrews et al., 2018). 

SMITH ET AL.

10.1029/2020GL091418

5 of 11

Figure 3.  Mean daily peak timing (circles) and timing range (gray bars) 
of observed variables. Diurnal cycles in melt energy and air temperatures 
peak around solar noon, followed by peaks in ice ablation, proglacial 
discharge, moulin input, ice speed, and ice surface uplift. GPS-derived 
daily peaks in uplift are temporally variable (Table S3). Peak proglacial 
discharge has little timing variability and is shifted −5 h earlier to account 
for the mean timing offset between Kangerlussuaq and the ice edge. This 
figure presents only timing of daily peaks, not subglacial routing delays 
and/or storages of meltwater.
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A discharge input-output approach (e.g., Armstrong & Anderson, 2020; Bartholomaus et al., 2011, 2008; 
McGrath et al., 2011), comparing moulin inputs with proglacial outputs, offers an alternate strategy for 
characterizing subglacial water storage and its link to basal sliding laws. Future studies, for example, could 
develop discharge-difference proxies over longer time scales and larger study areas by pairing surface-rout-
ed climate model output (e.g., Smith et al., 2017; Yang et al., 2019) with proglacial discharge records (Ren-
nermalm et  al.,  2017; van As et  al.,  2019), to relate net increases/decreases in ΔS to regional ice speed 
variations.

It is well-known that evolution of the subglacial system from inefficient to efficient states acts to modulate 
the ice dynamical response to supraglacial water inputs (e.g., Bartholomew et  al.,  2010;  2011; Hoffman 
et  al.,  2011). We find that peak or ascendant ΔS is associated with localized GrIS velocity accelerations 
(Figures 5c and S13c). This suggests that highest subglacial water pressure (and ice sliding speed) occurs 
when subglacial cavities are growing the fastest, not when their volume is largest (e.g., Cowton et al., 2016; 
Iken et al., 1983). As such, steady state theoretical basal sliding laws—which assume a relationship between 
cavity size and subglacial pressure – do not accurately represent transient behavior of the subglacial system.

It is important to note that the strong correlation between moulin input and ice velocity reported here (Fig-
ure 4d) is unlikely to hold over an entire melt season. Previous work has clearly established that Greenland 
ice sliding velocities are strongly influenced by long-term seasonal evolution of the subglacial hydrological 
system (e.g., Andrews et al., 2018; Bartholomew et al., 2010; Hoffman et al., 2011; Nienow et al., 2017). Our 
short 7 days record captures neither the early nor late melt season, when subglacial efficiency (and associat-
ed ice speeds) undergo extensive changes. Subglacial evolution makes melt-driven proxies inappropriate for 
estimating ice motion over the entire melt season (Andrews et al., 2014; Bartholomew et al., 2010) or mul-
tiple years (Davison et al., 2019; Tedstone et al., 2015). Over short time scales, however, we find that diurnal 
cycles in moulin input are the primary driver of fluctuating subglacial water pressures and associated ice 
accelerations—even in relatively thick ice (∼1 km) more than 40 km inland from the ice edge. Some slight 
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Figure 4.  Correlations between ice speed and other variables, after correcting for their mean differences (values in parentheses) in daily peak timing: (a) 
melt energy (−7 h); (b) air temperature (−8 h); (c) ablation (−4 h); (d) moulin input (−2 h); (e) ice surface elevation (+6 h); (f) proglacial discharge (−2 h at 
terminus). Statistical correlations presented in Table S4. Moulin input displays strongest correlation with ice speed (r = 0.90, τ = 0.70, p < 0.01).
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differences in peak timings between ΔS and ice motion, as well as some nonlinear behavior on descending 
limbs (Figures 5c and 13c) are discussed further in Text S9.

This study adds to a small but growing collection of GrIS supraglacial streamflow measurements (Carv-
er et al., 1994; Chandler et al., 2013; Echelmeyer & Harrison, 1990; Gleason et al., 2016; Holmes, 1955; 
McGrath et al., 2011; Smith et al., 2015, 2017). With peak daily discharges of 26.59–37.61 m3/s (Table S2), 
the discharges reported here are far larger than those collected in most supraglacial streams, but are typical 
for trunk supraglacial rivers in southwest Greenland (Smith et al., 2015, 2017). Nearly all of them terminate 
in moulins (Smith et al., 2015; Yang & Smith, 2016), and the high diurnal variability we observe (ranging 
from 19.05 to 30.50 m3/s, Table S2) signifies that their subglacial channels are likely out of equilibrium with 
supraglacial inputs for large portions of the day, such that associated accelerations in ice speed are driven 
by addition or removal of water outside of the channelized system.

Based on satellite mapping (e.g., Lampkin & VanderBerg, 2014; Smith et al., 2015; Yang et al., 2015, 2016; 
Yang & Smith, 2013, 2016) and topographic modeling (e.g., Banwell et al., 2016, 2012; Crozier et al., 2018; 
Karlstrom & Yang, 2016; King et al., 2016), we maintain that supraglacial rivers likely drive ice accelerations 
near hundreds of other terminal moulins as well. Process-level understanding and modeling of subglacial 
hydrology and associated ice dynamics should presume large, strongly diurnal inputs of meltwater entering 
hundreds of supraglacial river moulins distributed throughout Greenland's ablation zone. These inputs, 
countered by water output discharged beneath outlet glaciers, trigger short-term fluctuations in subglacial 
water storage that drive short-term accelerations in ice sheet motion.
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Figure 5.  Comparison of horizontal ice speed (blue) with proxies for subglacial water storage (S) and storage rate-of-change (ΔS): (a) ΔS estimated from GPS-
derived ice surface elevation; (b) S estimated from normalized discharge-difference; (c) ΔS estimated from normalized discharge-difference. See Figure 2c for S 
estimated from GPS. Brief accelerations in ice speed track ΔS (c) better than S (b), and discharge-difference (c) tracks ice speed better than GPS (a). Figure S13 
presents another version of this figure using AK4 proglacial discharges.
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Data Availability Statement
Discharge data, surface mass balance data, ADCP and GPS data summaries, S and ΔS proxies, and a time-
lapse camera video are available as tables (Tables S1–S2) and/or Additional Supporting Information (Data 
set S1–S9). Original, full-resolution ADCP and GPS data are archived at the Arctic Data Center (https://doi.
org/10.18739/A22F7JS1B). PROMICE KAN_M automated weather station data (Fausto & van As, 2019) 
are available from https://www.promice.org/PromiceDataPortal/. Proglacial river discharges for Qinnguata 
Kuussua/Watson River (van As et al., 2019), Akuliarusiarsuup Kuua (Rennermalm et al., 2013b, 2017), and 
Leverett Glacier (Tedstone et al., 2017) are available from https://doi.org/10.22008/promice/data/watson_
river_discharge, https://doi.org/10.1594/PANGAEA.876357, and https://doi.org/10.5285/17c400f1-ed6d-
4d5a-a51f-aad9ee61ce3d. Original GPS data files are also archived at UNVACO (https://www.unavco.org/
data/doi/10.7283/GT6K-B184).
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